SH Wave Scattering from Fractures using Boundary Element Method with Linear Slip Boundary Condition
نویسندگان
چکیده
A boundary element method (BEM) combined with a linear slip boundary condition is proposed to calculate SH wave scattering from fractures. The linear slip boundary condition was proposed by Schoenberg (1980) to model elastic wave propagation through an imperfectly bonded interface, where the traction cross the interface is continuous and displacement is discontinuous. Here, we demonstrate how to simulate SHwave scattering from fractures by applying the BEM and this linear slip boundary. Comparisons between results obtained using our model with those obtained using a computationally expensive finite difference method (FDM) (Coates and Schoenberg, 1995; Krüger et al., 2005) are performed to show the validity and accuracy of our approach. An example of SH wave scattering from three curved, crossing fractures is also given. Although our discussion here is focused on the linear slip boundary condition, our approach can easily be adopted to various slip boundary conditions that specify the displacement discontinuity and traction relations depending on different physical models of fractures.
منابع مشابه
Simulating Shear Wave Propagation in Two-Dimensional Fractured Heterogeneous Media by Coupling Boundary Element and Finite Difference Methods
A hybrid method to model the shear wave (SH) scattering from 2D fractures embedded in a heterogeneous medium is developed by coupling Boundary Element Method (BEM) and Finite Different Method (FDM) in the frequency domain. FDM is used to propagate an SH wave from a source through heterogeneities to localized homogeneous domains where fractures are embedded within artificial boundaries. Accordin...
متن کاملA novel boundary condition for the simulation of the submerged bodies using lattice boltzmann method
In this study, we proposed a novel scheme for the implementation of the no-slip boundary condition in thelattice Boltzmann method (LBM) . In detail , we have substituted the classical bounce-back idea by the direct immersed boundary specification . In this way we construct the equilibrium density functions in such a way that it feels the no-slip boundaries . Therefore , in fact a kind of equili...
متن کاملSignificant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind
This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...
متن کاملApplication of Boundary Element Method to 3 D Submerged Structures With Open Ends (RESEARCH NOTE)
This paper presents a three dimensional application of direct Boundary-Element Method (BEM) for computing interaction of sinusoidal waves with a large submerged open bottom structure near the floor with finite depth. The wave diffraction problem is formulated within the framework of linearized potential theory and solved numerically with direct BEM. A computer program based on BEM is developed ...
متن کاملNonlinear Vibration Analysis of Single-Walled Carbon Nanotube Conveying Fluid in Slip Boundary Conditions Using Variational Iterative Method
In this paper, nonlinear dynamic behaviour of the carbon nanotube conveying fluid in slip boundary conditions is studied using the variation iteration method. The developed solutions are used to investigate the effects of various parameters on the nonlinear vibration of the nanotube. The results indicate that an increase in the slip parameter leads to a decrease in the frequency of vibration an...
متن کامل